Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Microbiol Res ; 282: 127640, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38350171

RESUMO

Antimicrobial peptides (AMPs) show promise as alternatives to traditional antibiotics for treating drug-resistant infections. Their adaptability and diverse sequence possibilities allow for rational design by modulating physicochemical determinants to achieve desired biological properties, transforming them into peptides for potential new therapies. Nisin, one of the best-studied AMPs, is believed to have potential to be used as a therapeutic, particularly against antibiotic-resistant bacteria. However, its instability in physiological conditions limits its use in clinical applications and pharmaceutical development. Exploration of new natural variants of nisin has uncovered diverse properties using different domains. Shuffling peptide modules can fine-tune the chemical properties of these molecules, potentially enhancing stability while maintaining or improving antimicrobial activity. In this study, hybrid AMPs were created by combining domains from three unique nisin variants, i.e. nisin A, cesin and rombocin, leading to the identification of a promising variant, named cerocin A, which harbours only 25 amino acids compared to the typical 31-35 amino acid length of nisin. Cerocin A demonstrates potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), approaching that of nisin itself. Cerocin A's mode of action involves a dual mechanism through the combination of two domains, consisting of a small ring/domain (6 amino acids) from the C-terminal end of rombocin attached to the preceding peptide of cesin, changing it from a bacteriostatic to a bactericidal peptide. Further mutation studies identified a new variant, cerocin V, with significantly improved resistance against trypsin degradation, while maintaining high potency. Importantly, cerocin V showed no undesired toxic effects on human red blood cells and remained stable in human plasma. In conclusion, we demonstrate that peptide construction using domain engineering is an effective strategy for manipulating both biological and physicochemical aspects, leading to the creation of novel bioactive molecules with desired properties. These constructs are appealing candidates for further optimization and development as novel antibiotics.


Assuntos
Bacteriocinas , Staphylococcus aureus Resistente à Meticilina , Nisina , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Bacteriocinas/genética , Bacteriocinas/farmacologia , Nisina/genética , Nisina/farmacologia , Staphylococcus aureus Resistente à Meticilina/genética , Aminoácidos , Testes de Sensibilidade Microbiana
2.
Peptides ; 174: 171152, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38220092

RESUMO

Nisin serves as the prototype within the lantibiotic group of antimicrobial peptides, exhibiting a broad-spectrum inhibition against Gram-positive bacteria, including important food-borne pathogens and clinically relevant antibiotic-resistant strains. The gene-encoded nature of nisin allows for gene-based bioengineering, enabling the generation of novel derivatives. It has been demonstrated that nisin mutants can be produced with improved functional properties. Here, we particularly focus on the uncommon amino acid residues dehydroalanine (Dha) and dehydrobutyrin (Dhb), whose functions are not yet fully elucidated. Prior to this study, we developed a new expression system that utilizes the nisin modification machinery NisBTC to advance expression, resulting in enhanced peptide dehydration efficiency. Through this approach, we discovered that the dehydrated amino acid Dhb at position 18 in the peptide rombocin, a short variant of nisin, displayed four times higher activity compared to the non-dehydrated peptide against the strain Lactococcus lactis. Furthermore, we observed that in the peptides nisin and rombocin, the dehydrated amino acid Dha at residue positon 18 exhibited superior activity compared to the dehydrated amino acid Dhb. Upon purifying the wild-type nisin and its variant nisinG18/Dha to homogeneity, the minimum inhibitory concentration (MIC) indicated that the variant exhibited activity similar to that of wild-type nisin in inhibiting the growth of Bacillus cereus but showed twice the MIC values against the other four tested Gram-positive strains. Further stability tests demonstrated that the dehydrated peptide exhibited properties similar to wild-type nisin under different temperatures but displayed higher resistance to proteolytic enzymes compared to wild-type nisin.


Assuntos
Bacteriocinas , Lactococcus lactis , Nisina , Nisina/genética , Nisina/farmacologia , Aminoácidos/genética , Peptídeos Antimicrobianos , Antibacterianos/farmacologia , Antibacterianos/química , Bacteriocinas/química , Lactococcus lactis/metabolismo
3.
ACS Synth Biol ; 13(1): 370-383, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38194633

RESUMO

Nisin, with its unique mode of action and potent antimicrobial activity, serves as a remarkable inspiration for the design of novel antibiotics. However, peptides possess inherent weaknesses, particularly their susceptibility to proteolytic degradation, such as by trypsin, which limits their broader applications. This led us to speculate that natural variants of nisin produced by underexplored bacterial species can potentially overcome these limitations. We carried out genome mining of two Romboutsia sedimentorum strains, RC001 and RC002, leading to the discovery of rombocin A, which is a 25 amino acid residue short nisin variant that is predicted to have only four macrocycles compared to the known 31-35 amino acids long nisin variants with five macrocycles. Using the nisin-controlled expression system, we heterologously expressed fully modified and functional rombocin A in Lactococcus lactis and demonstrated its selective antimicrobial activity against Listeria monocytogenes. Rombocin A uses a dual mode of action involving lipid II binding activity and dissipation of the membrane potential to kill target bacteria. Stability tests confirmed its high stability at different pH values, temperatures, and in particular, against enzymatic degradation. With its gene-encoded characteristic, rombocin A is amenable to bioengineering to generate novel derivatives. Further mutation studies led to the identification of rombocin K, a mutant with enhanced bioactivity against L. monocytogenes. Our findings suggest that rombocin A and its bioengineered variant, rombocin K, are promising candidates for development as food preservatives or antibiotics against L. monocytogenes.


Assuntos
Lactococcus lactis , Listeria monocytogenes , Nisina , Nisina/genética , Nisina/farmacologia , Nisina/química , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Antibacterianos/metabolismo , Mutação , Lactococcus lactis/genética , Lactococcus lactis/metabolismo
4.
FEMS Microbiol Rev ; 47(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37300874

RESUMO

It is almost a century since nisin was discovered in fermented milk cultures, coincidentally in the same year that penicillin was first described. Over the last 100 years this small, highly modified pentacyclic peptide has not only found success in the food industry as a preservative but has also served as the paradigm for our understanding of the genetic organization, expression, and regulation of genes involved in lantibiotic biosynthesis-one of the few cases of extensive post-translation modification in prokaryotes. Recent developments in understanding the complex biosynthesis of nisin have shed light on the cellular location of the modification and transport machinery and the co-ordinated series of spatio-temporal events required to produce active nisin and provide resistance and immunity. The continued unearthing of new natural variants from within human and animal gastrointestinal tracts has sparked interest in the potential application of nisin to influence the microbiome, given the growing recognition of the role the gastrointestinal microbiota plays in health and disease. Moreover, interdisciplinary approaches have taken advantage of biotechnological advancements to bioengineer nisin to produce novel variants and expand nisin functionality for applications in the biomedical field. This review will discuss the latest progress in these aspects of nisin research.


Assuntos
Bacteriocinas , Lactococcus lactis , Nisina , Humanos , Nisina/genética , Nisina/metabolismo , Bacteriocinas/metabolismo , Processamento de Proteína Pós-Traducional , Penicilinas/metabolismo , Antibacterianos/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo
5.
Bioresour Technol ; 385: 129387, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37364650

RESUMO

Glycosyltransferases synthesize a variety of exopolysaccharides (EPS) with different properties by altering the type of glycosidic linkage, degree of branching, length, mass, and conformation of the polymers. The genome analysis of an EPS-producing, Lactobacillus plantarum BR2 (Accession No: MN176402) showed twelve glycosyltransferase genes, and the gene BR2gtf (1116 bp), annotated as an EPS biosynthetic glycosyltransferase was cloned into the pNZ8148 vector. The recombinant pNZ8148 vector along with pNZ9530, a regulatory plasmid, were electroporated to L. plantarum BR2 for the over-expression of gtf gene under a nisin-controlled expression system and the glycosyltransferase activity of the recombinant and the wild-type strains were analysed. The recombinant strain showed 54.4% increase in EPS production with the maximum EPS production of 23.2 ± 0.5 g/L in a 5 L bioreactor study after 72 h of fermentation. This study shows an effective molecular strategy possibly to be adopted in lactic acid bacteria to enhance exopolysaccharide production.


Assuntos
Lactobacillales , Lactobacillus plantarum , Nisina , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Nisina/genética , Nisina/metabolismo , Lactobacillales/metabolismo , Plasmídeos , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Polissacarídeos Bacterianos/metabolismo
6.
PLoS One ; 18(4): e0281175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37036850

RESUMO

Lactococcus lactis subsp. lactis is a food bacterium that has been utilized for decades in food fermentation and the development of high-value industrial goods. Among these, nisin, which is produced by several strains of L. lactis subsp. lactis, plays a crucial role as a food bio-preservative. The gene expression for nisin synthesis was evaluated using qPCR analysis. Additionally, a series of re-transformations of the strain introducing multiple copies of the nisA and nisRK genes related to nisin production were developed. The simultaneous expression of nisA and nisZ genes was used to potentiate the effective inhibition of foodborne pathogens. Furthermore, qPCR analysis indicated that the nisA and nisRK genes were expressed at low levels in wild-type L. lactis subsp. lactis. After several re-transformations of the strain with the nisA and nisRK genes, a high expression of these genes was obtained, contributing to improved nisin production. Also, co-expression of the nisA and nisZ genes resulted in extremely effective antibacterial action. Hence, this study would provide an approach to enhancing nisin production during industrial processes and antimicrobial activity.


Assuntos
Lactococcus lactis , Nisina , Nisina/genética , Nisina/farmacologia , Lactococcus lactis/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Genes Bacterianos , Bioengenharia
7.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047785

RESUMO

Recently, the food industry and the animal farming field have been working on different strategies to reduce the use of antibiotics in animal production. The use of probiotic producers of antimicrobial peptides (bacteriocins) is considered to be a potential solution to control bacterial infections and to reduce the use of antibiotics in animal production. In this study, Ligilactobacillus salivarius P1CEA3, isolated from the gastrointestinal tract (GIT) of pigs, was selected for its antagonistic activity against Gram-positive pathogens of relevance in swine production. Whole genome sequencing (WGS) of L. salivarius P1ACE3 revealed the existence of two gene clusters involved in bacteriocin production, one with genes encoding the class II bacteriocins salivaricin B (SalB) and Abp118, and a second cluster encoding a putative nisin variant. Colony MALDI-TOF MS determinations and a targeted proteomics combined with massive peptide analysis (LC-MS/MS) of the antimicrobial peptides encoded by L. salivarius P1CEA3 confirmed the production of a 3347 Da novel nisin variant, termed nisin S, but not the production of the bacteriocins SalB and Abp118, in the supernatants of the producer strain. This is the first report of a nisin variant encoded and produced by L. salivarius, a bacterial species specially recognized for its safety and probiotic potential.


Assuntos
Bacteriocinas , Ligilactobacillus salivarius , Nisina , Suínos , Animais , Nisina/genética , Nisina/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Bacteriocinas/genética , Bacteriocinas/farmacologia , Antibacterianos/farmacologia , Peptídeos Antimicrobianos
8.
J Bacteriol ; 204(10): e0024722, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36094307

RESUMO

The disease-producing capacity of the opportunistic pathogen Enterococcus faecalis is enhanced by the ability of the bacterium to evade killing by antimicrobial agents. Survival of E. faecalis in the presence of the human antimicrobial enzyme lysozyme is mediated in part by the site 2 metalloprotease Eep; however, a complete model of enterococcal lysozyme resistance has not been elucidated. To better understand the molecular basis for lysozyme resistance in E. faecalis, we analyzed Δeep suppressor mutants that acquire resistance to lysozyme through mutation of the gene OG1RF_11713, a predicted teichoic acid biosynthesis-encoding gene located within the variable region of the enterococcal polysaccharide antigen (epa) locus. Sequence comparisons revealed that OG1RF_11713 is most similar to the cytidine-5'-diphosphate (CDP)-glycerol:poly-(glycerolphosphate)glycerophosphotransferase TagF from Staphylococcus epidermidis. Inactivation of OG1RF_11713 in both the wild-type and Δeep genetic backgrounds was sufficient to increase the resistance of E. faecalis OG1RF to lysozyme. Minimal amounts of N-acetylgalactosamine were detectable in cell wall carbohydrate extracts of OG1RF_11713 deletion mutants, and this was associated with a reduction in negative cell surface charge. Targeted disruption of OG1RF_11713 was also associated with increased susceptibility to the antibiotic polymyxin B and membrane-targeting detergents and decreased susceptibility to the lantibiotic nisin. This work implicates OG1RF_11713 as a major determinant of cell envelope integrity and provides further validation that lysozyme resistance is intrinsically linked to the modification of enterococcal cell wall polysaccharides. IMPORTANCE Enterococcus faecalis is a leading cause of health-care-associated infections for which there are limited treatment options. E. faecalis is resistant to several antibiotics and to high concentrations of the human antimicrobial enzyme lysozyme. The molecular mechanisms that mediate lysozyme resistance in E. faecalis are complex and remain incompletely characterized. This work demonstrates that a gene located within the variable region of the enterococcal polysaccharide antigen locus of E. faecalis strain OG1RF (OG1RF_11713), which is predicted to encode a component of the teichoic acid biosynthesis machinery, is part of the lysozyme resistance circuitry and is important for enterococcal cell wall integrity. These findings suggest that OG1RF_11713 is a potential target for new therapeutic strategies to combat enterococcal infections.


Assuntos
Enterococcus faecalis , Nisina , Humanos , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Nisina/genética , Muramidase/metabolismo , Detergentes/metabolismo , Polimixina B , Acetilgalactosamina , Glicerofosfatos , Difosfatos/metabolismo , Glicerol/metabolismo , Polissacarídeos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Fenótipo , Citidina , Cistina Difosfato/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
9.
Appl Environ Microbiol ; 88(5): e0184721, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35044848

RESUMO

Bacteria adapt to the constantly changing environment by regulating their metabolism. The global transcriptional regulator CodY is known to regulate metabolism in low-G+C Gram-positive bacteria. Systems-level identification of its direct targets by proteome and chromatin immunoprecipitation followed by sequencing (ChIP-seq) assays have rarely been reported. Here, we identified that CodY serves as an activator or a repressor of hundreds of genes involved in nitrogen metabolism, carbohydrate metabolism, and transcription through iTRAQ proteome and ChIP-seq. Combined with the electrophoretic mobility shift assay (EMSA), apart from the genes associated with amino acid biosynthesis (ilvD, leuA, optS, ybbD, dtpT, and pepN), genes involved in cell wall synthesis (murD and ftsW) and nisin immunity (nisI) were identified as being regulated by CodY. Moreover, it was demonstrated by nisin resistance assay that CodY activated the transcription of nisI and contributed to nisin immunity. Intriguingly, CodY showed a self-regulation through binding to the motif AAAGGTGTGACAACT in the coding sequence (CDS) region of codY, as verified by DNase I footprinting assay and MEME analysis. In addition, a novel conserved AT-rich motif, AATWTTCTGACAATT, was obtained in L. lactis F44. This study provides new insights into the comprehensive CodY regulation in L. lactis by controlling metabolism, nisin immunity, and self-expression. IMPORTANCE Lactococcus lactis, a species of lactic acid bacteria (LAB) widely used in food fermentation, has been the model strain in genetic engineering, and its application has extended from food to microbial cell factories. CodY is a global regulator in low-G+C Gram-positive bacteria. Its function and direct target genes at the genome-level are little known in L. lactis. In this study, we describe the comprehensive regulation mechanism of CodY. It widely modulated the metabolism of nitrogen and carbohydrate, cell wall synthesis, and nisin immunity in L. lactis F44, and its expression level was regulated by feedback control.


Assuntos
Lactococcus lactis , Nisina , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Nisina/genética
10.
mBio ; 12(5): e0258521, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34607454

RESUMO

Nisin is synthesized by a putative membrane-associated lantibiotic synthetase complex composed of the dehydratase NisB, the cyclase NisC, and the ABC transporter NisT in Lactococcus lactis. Earlier work has demonstrated that NisB and NisT are linked via NisC to form such a complex. Here, we conducted for the first time the isolation of the intact NisBTC complex and NisT-associated subcomplexes from the cytoplasmic membrane by affinity purification. A specific interaction of NisT, not only with NisC but also with NisB, was detected. The cellular presence of NisB and/or NisC in complex with precursor nisin (NisA) was determined, which shows a highly dynamic and transient assembly of the NisABC complex via an alternating binding mechanism during nisin dehydration and cyclization. Mutational analyses, with cysteine-to-alanine mutations in NisA, suggest a tendency for NisA to lose affinity to NisC concomitant with an increasing number of completed lanthionine rings. Split NisBs were able to catalyze glutamylation and elimination reactions in an alternating way as efficiently as full-length NisB, with no significant influence on the following cyclization and transport. Notably, the harvest of the leader peptide in complex with the independent elimination domain of NisB points to a second leader peptide binding motif that is located in the C-terminal region of NisB, giving rise to a model where the leader peptide binds to different sites in NisB for glutamylation and elimination. Overall, these combined studies provide new insights into the cooperative biosynthesis mechanism of nisin and thereby lay a foundation for further structural and functional characterization of the NisBTC complex. IMPORTANCE Lantibiotics are ribosomally synthesized and posttranslationally modified peptide antibiotics. Although the membrane-associated lantibiotic biosynthesis machinery has long been proposed to exist, the isolation of such a complex has not been reported yet, which limits the elucidation of the processive mechanism of lantibiotic biosynthesis. In this work, we present direct evidence for the existence of the nisin biosynthetic complex at the cytoplasmic membrane of L. lactis, producing fully modified precursor nisin. By analyses of the interactions within the intact NisBTC complex and the modification machinery NisABC, we were able to elucidate the cooperative action for the modification and transport of nisin. Inspired by the natural and documented degradation process of NisB, artificial split-NisBs were made and thoroughly characterized, demonstrating a crucial clue to the evolution of the LanB family. Importantly, our study also suggests that the leader peptide of NisA binds to two different recognition motifs, i.e., one for glutamylation and one for elimination.


Assuntos
Proteínas de Bactérias/genética , Lactococcus lactis/genética , Nisina/genética , Nisina/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Lactococcus lactis/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Nisina/biossíntese , Nisina/classificação , Processamento de Proteína Pós-Traducional , Sinais Direcionadores de Proteínas/genética
11.
mBio ; 12(4): e0121921, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34281399

RESUMO

A membrane-associated lanthipeptide synthetase complex, consisting of the dehydratase NisB, the cyclase NisC, and the ABC transporter NisT, has been described for nisin biosynthesis in the coccoid bacterium Lactococcus lactis. Here, we used advanced fluorescence microscopy to visualize the functional nisin biosynthesis machinery in rod-shaped cells and analyzed its spatial distribution and dynamics employing a platform we developed for heterologous production of nisin in Bacillus subtilis. We observed that NisT, as well as NisB and NisC, were all distributed in a punctate pattern along the cell periphery, opposed to the situation in coccoid cells. NisBTC proteins were found to be highly colocalized, being visualized at the same spots by dual fluorescence microscopy. In conjunction with the successful isolation of the biosynthetic complex NisBTC from the cell membrane, this corroborated that the visual bright foci were the sites for nisin maturation and transportation. A strategy of differential timing of expression was employed to demonstrate the in vivo dynamic assembly of NisBTC, revealing the recruitment by NisT of NisBC to the membrane. Additionally, by use of mutated proteins, the nucleotide binding domain (NBD) of NisT was found to function as a membrane anchor for NisB and/or NisC. We also show that the nisin biosynthesis sites are static and likely associated with proteins residing in lipid rafts. Based on these data, we propose a model for a three-phase production of modified precursor nisin in rod-shaped bacteria, presenting the assembly dynamics of NisBTC and emphasizing the crucial role of NisBC, next to NisT, in the process of precursor nisin translocation. IMPORTANCE Nisin is a model antimicrobial peptide for LanBC-modified lantibiotics that are modified and transported by a membrane synthetase complex. Although the subcellular localization and the assembly process of such a complex in L. lactis have been described in our recent work (J. Chen, A. J. van Heel, and O. P. Kuipers, mBio 11:e02825-20, 2020, https://doi.org/10.1128/mBio.02825-20), it proved difficult to gain a more detailed insight into the exact LanBTC assembly in the L. lactis system. Rod-shaped cells, especially B. subtilis, are better suited to study the assembly dynamics of these protein complexes. In this work, we present evidence for the existence of the lanthipeptide biosynthetic complex by visualizing and isolating the machinery in vivo. The dynamic behavior of the modification machinery and the transporter within the cells was characterized in depth, revealing the dependence of first LanB and LanC on each other and subsequent recruitment of them by LanT during the machinery assembly. Importantly, the elucidation of the dynamic assembly of the complex will facilitate future studies of lanthipeptide transport mechanisms and the structural characterization of the complete complex.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Nisina/biossíntese , Nisina/genética , Peptídeos Antimicrobianos/biossíntese , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/metabolismo , Proteínas de Bactérias/genética , Bacteriocinas/biossíntese , Bacteriocinas/genética , Bacteriocinas/metabolismo , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Microscopia de Fluorescência/métodos , Nisina/análise
12.
J Dairy Sci ; 104(9): 9556-9569, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34147226

RESUMO

ComX can improve bacterial competence by modulating global gene expression. Although competence induction may also be a protective mechanism under stress, this has not been investigated in detail. Here, we demonstrated that ComX improved the acid tolerance and nisin yield of Lactococcus lactis, which is an important gram-positive bacterium increasingly used in modern biotechnological applications. We found that overexpression of comX could improve the survival rate up to 36.5% at pH 4.0, compared with only 5.4% and 1.1% with the wild-type and comX knockout strains, respectively. Moreover, quantitative real-time PCR results indicated that comX overexpression stimulated the expression of late competence genes synergistically with exposure to acid stress. Finally, electrophoretic mobility shift assay demonstrated the binding of purified ComX to the cin-box in the promoters of these genes. Taken together, our results reveal a regulation mechanism by which ComX and acid stress can synergistically modulate the expression of late competence genes to enhance cells' acid tolerance and nisin yield.


Assuntos
Lactococcus lactis , Nisina , Ácidos/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Nisina/genética
13.
Appl Environ Microbiol ; 87(16): e0039121, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34105992

RESUMO

Antimicrobial peptides are evolving as novel therapeutic options against the increasing problem of multidrug-resistant microorganisms, and nisin is one such avenue. However, some bacteria possess a specific nisin resistance system (NSR), which cleaves the peptide reducing its bactericidal efficacy. NSR-based resistance was identified in strains of Streptococcus uberis, a ubiquitous pathogen that causes mastitis in dairy cattle. Previous studies have demonstrated that a nisin A derivative termed nisin PV, featuring S29P and I30V, exhibits enhanced resistance to proteolytic cleavage by NSR. Our objective was to investigate the ability of this nisin derivative to eradicate and inhibit biofilms of S. uberis DPC 5344 and S. uberis ATCC 700407 (nsr+) using crystal violet (biomass), 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) (viability) assays, and confocal microscopy (viability and architecture). When preestablished biofilms were assessed, both peptides reduced biofilm biomass by over 60% compared to that of the untreated controls. However, a 42% higher reduction in viability was observed following treatment with nisin PV compared to that of nisin A. Accordingly, confocal microscopy analysis revealed significantly more dead cells on the biofilm upper surface and a reduced thickness following treatment with nisin PV. When biofilm inhibition was assessed, nisin PV inhibited biofilm formation and decreased viability up to 56% and 85% more than nisin A, respectively. Confocal microscopy analysis revealed a lack of biofilm for S. uberis ATCC 700407 and only dead cells for S. uberis DPC 5344. These results suggest that nisin PV is a promising alternative to effectively reduce the biofilm formation of S. uberis strains carrying NSR. IMPORTANCE One of the four most prevalent species of bovine mastitis-causing pathogens is S. uberis. Its ability to form biofilms confers on the bacteria greater resistance to antibiotics, requiring higher doses to be more effective. In a bid to limit antibiotic resistance development, the need for alternative antimicrobials is paramount. Bacteriocins such as nisin represent one such alternative that could alleviate the impact of mastitis caused by S. uberis. However, many strains of S. uberis have been shown to possess nisin resistance determinants, such as the nisin resistance protein (NSR). In this study, we demonstrate the ability of nisin and a nisin derivative termed PV that is insensitive to NSR to prevent and remove biofilms of NSR-producing S. uberis strains. These findings will add new information to the antimicrobial bacteriocins and control of S. uberis research fields specifically in relation to biofilms and nsr+ mastitis-associated strains.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Nisina/química , Nisina/farmacologia , Streptococcus/efeitos dos fármacos , Bioengenharia , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Nisina/genética , Streptococcus/crescimento & desenvolvimento , Streptococcus/fisiologia
14.
Food Microbiol ; 99: 103835, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34119119

RESUMO

In this study, we examined the ability of nisin A and a rationally assembled bank of 36 nisin derivative producing Lactococcus lactis strains to inhibit Listeria. A broth-based bioluminescence assay for screening single and combinations of bioengineered nisin derivatives using cell-free supernatants (CFS) from nisin derivative producing strains was developed. In this way, we screened 630 combinations of nisin derivative producing strains, identifying two (CFS from M17Q + N20P and M17Q + S29E) which exhibited enhanced anti-listerial activity when used together compared to when used alone, or to the nisin A producing strain. Minimal inhibitory concentration assays performed with purified peptides revealed than when used singly, the specific activities of M17Q, N20P and S29E (3.75-7.5 µM) against L. innocua were equal to, or less than that of nisin A (MIC of 3.75 µM). Broth-based growth curve assays using purified peptides demonstrated that use of the double peptide combinations and a triple peptide combination (M17Q + N20P + S29E) resulted in an extended lag phase of L. innocua, while kill curve assays confirmed the enhanced bactericidal activity of the combinations in comparison to the single derivative peptides or nisin A. Furthermore, the enhanced activity of the M17Q + N20P combination was maintained in a model food system (frankfurter homogenate) at both chill (4 °C) and abusive (20 °C) temperature conditions, with final cell numbers significantly less (1-2 log10 CFU/ml) than those observed with the derivative peptides alone, or nisin A. To our knowledge, this study is the first investigation that combines bioengineered bacteriocins with the aim of discovering a combination with enhanced antimicrobial activity.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Lactococcus lactis/metabolismo , Listeria/efeitos dos fármacos , Nisina/metabolismo , Nisina/farmacologia , Antibacterianos/química , Bioengenharia , Lactococcus lactis/genética , Listeria/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Nisina/química , Nisina/genética
15.
J Appl Microbiol ; 131(5): 2223-2234, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33876507

RESUMO

AIMS: Increases in antimicrobial resistance have meant that the antimicrobial potential of lantibiotics is now being investigated irrespective of the nature of the producing organism. The aim of this study was to investigate whether natural nisin variants produced by non-Generally Recognized as Safe (GRAS) strains, such as nisin H, nisin J and nisin P, could be expressed in a well-characterized GRAS host. METHODS AND RESULTS: This study involved cloning the nisin A promoter and leader sequence fused to nisin H, nisin J or nisin P structural gene sequences originally produced by Streptococcus hyointestinalis DPC 6484, Staphylococcus capitis APC 2923 and Streptococcus agalactiae DPC 7040, respectively. This resulted in their expression in Lactococcus lactis NZ9800, a genetically modified strain that does not produce nisin A. CONCLUSIONS: Induction of the nisin controlled gene expression system demonstrates that these three nisin variants could be acted on by nisin A machinery provided by the host strain. SIGNIFICANCE AND IMPACT OF THE STUDY: Describes the first successful heterologous production of three natural nisin variants by a GRAS strain, and demonstrates how such systems could be harnessed not only for lantibiotic production but also in the expansion of their structural diversity and development for use as future biotherapeutics.


Assuntos
Bacteriocinas , Lactococcus lactis , Nisina , Antibacterianos/farmacologia , Nisina/genética , Nisina/farmacologia , Staphylococcus/genética , Streptococcus , Streptococcus agalactiae
16.
Cells ; 10(2)2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670309

RESUMO

Clostridioides difficile is the leading cause of antibiotic-associated diarrhea but can also result in more serious, life-threatening conditions. The incidence of C. difficile infections in hospitals is increasing, both in frequency and severity, and antibiotic-resistant C. difficile strains are advancing. Against this background antimicrobial peptides (AMPs) are an interesting alternative to classic antibiotics. Information on the effects of AMPs on C. difficile will not only enhance the knowledge for possible biomedical application but may also provide insights into mechanisms of C. difficile to adapt or counteract AMPs. This study applies state-of-the-art mass spectrometry methods to quantitatively investigate the proteomic response of C. difficile 630∆erm to sublethal concentrations of the AMP nisin allowing to follow the cellular stress adaptation in a time-resolved manner. The results do not only point at a heavy reorganization of the cellular envelope but also resulted in pronounced changes in central cellular processes such as carbohydrate metabolism. Further, the number of flagella per cell was increased during the adaptation process. The potential involvement of flagella in nisin adaptation was supported by a more resistant phenotype exhibited by a non-motile but hyper-flagellated mutant.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Antibacterianos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Nisina/farmacologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas de Bactérias/metabolismo , Clostridioides/metabolismo , Clostridioides difficile/metabolismo , Nisina/genética , Nisina/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteômica/métodos
17.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709730

RESUMO

NisI confers immunity against nisin, with high substrate specificity to prevent a suicidal effect in nisin-producing Lactococcus lactis strains. However, the NisI maturation process as well as its influence on nisin resistance has not been characterized. Here, we report the roles of lipoprotein signal peptidase II (Lsp) and prolipoprotein diacylglyceryl transferase (Lgt) in NisI maturation and nisin resistance of L. lactis F44. We found that the resistance of nisin of an Lsp-deficient mutant remarkably decreased, while no significant differences in growth were observed. We demonstrated that Lsp could cleave signal peptide of NisI precursor in vitro Moreover, diacylglyceryl modification of NisI catalyzed by Lgt played a decisive role in attachment of NisI on the cell envelope, while it exhibited no effects on cleavage of the signal peptides of NisI precursor. The dissociation constant (KD ) for the interaction between nisin and NisI exhibited a 2.8-fold increase compared with that between nisin and pre-NisI with signal peptide by surface plasmon resonance (SPR) analysis, providing evidence that Lsp-catalyzed signal peptide cleavage was critical for the immune activity of NisI. Our study revealed the process of NisI maturation in L. lactis and presented a potential strategy to enhance industrial nisin production.IMPORTANCE Nisin, a safe and natural antimicrobial peptide, has a long and impressive history as a food preservative and is also considered a novel candidate to alleviate the increasingly serious threat of antibiotic resistance. Nisin is produced by certain L. lactis strains. The nisin immunity protein NisI, a membrane-bound lipoprotein, is expressed by nisin producers to avoid suicidal action. Here, we report the roles of Lsp and Lgt in NisI maturation and nisin resistance of L. lactis F44. The results verified the importance of Lsp to NisI-conferred immunity and Lgt to localization. Our study revealed the process of NisI maturation in L. lactis and presented a potential strategy to enhance industrial nisin production.


Assuntos
Proteínas de Bactérias/genética , Lactococcus lactis/genética , Lipoproteínas/genética , Proteínas de Membrana/genética , Nisina/genética , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Bactérias/metabolismo , Lactococcus lactis/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Nisina/metabolismo , Transferases/genética , Transferases/metabolismo
18.
ACS Synth Biol ; 9(7): 1833-1842, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32551553

RESUMO

Efficient bacterial cell factories are important for the screening and characterization of potent antimicrobial peptides such as lantibiotics. Although lantibiotic production systems have been established in Lactococcus lactis and Escherichia coli, the industrial workhorse Bacillus subtilis has been left relatively unexplored as a lantibiotic production host. Therefore, we tested different B. subtilis strains for their ability to produce lantibiotic peptides by using the subtilin modification and transport enzymes derived from the natural subtilin producer B. subtilis ATCC 6633. Our study shows that although B. subtilis ATCC 6633 and 168 are able to produce various processed lantibiotic peptides, an evident advantage of using either the 8-fold protease-deficient strain WB800 or the genome-minimized B. subtilis 168 strain PG10 is the lack of extracellular serine protease activity. Consequently, leader processing of lantibiotic precursor peptides is circumvented and thus potential toxicity toward the production host is prevented. Furthermore, PG10 provides a clean secondary metabolic background and therefore appears to be the most promising B. subtilis lantibiotic production host. We demonstrate the production of various lantibiotic precursor peptides by PG10 and show different options for their in vitro activation. Our study thus provides a convenient B. subtilis-based lantibiotic production system, which facilitates the search for novel antimicrobial peptides.


Assuntos
Antibacterianos/biossíntese , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Bacteriocinas/biossíntese , Engenharia Metabólica/métodos , Nisina/biossíntese , Serina Proteases/deficiência , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacteriocinas/genética , Bacteriocinas/farmacologia , Reatores Biológicos , Expressão Gênica , Genes Bacterianos , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Nisina/genética , Nisina/farmacologia , Biossíntese Peptídica/genética , Plasmídeos/genética , Serina Proteases/genética
19.
Methods Mol Biol ; 2127: 29-45, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32112313

RESUMO

The expression and downstream purification of membrane proteins is the prerequisite for biophysical and structural studies of this major source of therapeutic targets. The gram-positive bacterium Lactococcus lactis is an attractive option for heterologous membrane protein expression and purification thanks to advantageous characteristics such as mild proteolytic activity and small genome size. Vectors designed for gene transcription under the control of inducible promoters are readily available. Specifically, the tightly regulated nisin-inducible gene expression system (NICE) allows to fine-tune the overexpression of different gene products. The expressed protein engineered with a suitable tag can be readily detected and purified from crude membrane extracts. The purpose of this protocol chapter is to detail the procedures of cloning, expression, isolation of the membrane vesicles, and affinity purification of a membrane protein of interest in L. lactis.


Assuntos
Clonagem Molecular/métodos , Lactococcus lactis , Proteínas de Membrana , Conformação Proteica , Proteínas Recombinantes , Membrana Celular/química , Membrana Celular/metabolismo , Fracionamento Químico/métodos , Cristalografia por Raios X/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos , Lactococcus lactis/química , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Espectrometria de Massas/métodos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Nisina/química , Nisina/genética , Nisina/metabolismo , Organismos Geneticamente Modificados , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência/métodos , Transformação Bacteriana
20.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32086306

RESUMO

Nisin A is a bacteriocin produced by Lactococcus lactis and is widely used as a food preservative. Staphylococcus aureus has the BraRS-VraDE system that provides resistance against low concentrations of nisin A. BraRS is a two-component system that induces the expression of the ABC transporter VraDE. Previously, we isolated a highly nisin A-resistant strain with increased VraDE expression due to a mutation in braRS In this study, we isolated S. aureus MW2 mutants with BraRS-VraDE-independent nisin A resistance. These mutants, designated SAN2 ( S.aureusnisin resistant) and SAN469, had a mutation in pmtR, which encodes a transcriptional regulator responsible for the expression of the pmtABCD operon. As a result, these mutants exhibited increased expression of PmtABCD, a transporter responsible for the export of phenol-soluble modulin (PSM). Characterization of the mutants revealed that they have decreased susceptibility to human ß-defensin-3 (hBD3) and LL37, which are innate immune factors. Additionally, these mutants showed higher hemolytic activity than the original MW2 strain. Furthermore, in a mouse bacteremia model, the SAN2 strain exhibited a lower survival rate than the original MW2 strain. These results indicate that the increased expression of pmtABCD due to a pmtR mutation is an alternative nisin A resistance mechanism that also affects virulence in S. aureusIMPORTANCE Recently, the emergence of antibiotic-resistant bacteria has resulted in serious problems for chemotherapy. In addition, many antibacterial agents, such as disinfectants and food additives, are widely used. Therefore, there is a possibility that bacteria are becoming resistant to some antibacterial agents. In this study, we investigated whether Staphylococcus aureus can become resistant to nisin A, one of the bacteriocins applied as a food additive. We isolated a highly nisin A-resistant strain designated SAN2 that displayed increased expression of Pmt proteins, which are involved in the secretion of virulence factors called phenol-soluble modulins (PSMs). This strain also showed decreased susceptibility to human antimicrobial peptides and increased hemolytic activity. In addition, SAN2 showed increased lethal activity in a mouse bacteremia model. Our study provides new insights into the possibility that the acquisition of resistance against food preservatives may modulate virulence in S. aureus, suggesting that we need to pay more attention to the use of food preservatives together with antibiotics.


Assuntos
Bacteriocinas/genética , Farmacorresistência Bacteriana/genética , Lactococcus lactis/fisiologia , Nisina/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Antibacterianos/farmacologia , Bacteriocinas/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Nisina/metabolismo , Staphylococcus aureus/genética , Virulência/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...